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We consider here the detailed application of a model Reynolds stress equation 
(Narasimha 1969) to plane turbulent wakes subjected to pressure gradients. The 
model, which is a transport equation for the stress exhibiting relaxation and 
diffusion, is found to be consistent with the observed response of a wake to a 
nearly impulsive pressure gradient (Narasimha & Prabhu 1971). It implies in 
particular that a wake can be in equilibrium only if the longitudinal strain rate is 
appreciably less than the wake shear. 

We then describe a further series of experiments, undertaken to investigate 
the range of validity of the model. It is found that, with an appropriate conver- 
gence correction when necessary, the model provides excellent predictions of 
wake development under favourable, adverse and mixed pressure gradients. 
Furthermore, the behaviour of constant-pressure distorted wakes, as reported 
by Keffer (1965,1967), is also explained very well by the model when account is 
taken of the effective flow convergence produced by the distortion. In  all these 
calculations, only a simple version of the model is used, involving two non- 
dimensional constants both of which have been estimated from a single relaxation 
experiment. 

1. Introduction 
This paper is an attempt to provide a quantitative description of the develop- 

ment of plane turbulent wakes subjected to arbitrary pressure gradients. Such 
an attempt, unless restricted to very small pressure gradients, will have to take 
account of the strong influence of the history of the flow implied in the observed 
behaviour of a relaxing wake (Narasimha & Prabhu (1972), hereafter referred to 
as I). Models for the Reynolds stress that allow for a relaxation effect (e.g 
Nee & Kovasznay 1969; Nash & Hicks 1969) have usually been formulated for 
turbulent boundary layers and (without further modification) are likely to be 
useful for wakes only for relatively short distances downstream of the trailing 
edge (Bradshaw 1969). 

We adopt and study here a model (Narasimha 1969) which was proposed in the 
light of the experiments on wakes reported in I, but which is capable of generaliza- 
tion, especially to boundary layers with a wake-like outer layer. Our aim here is 
not to represent each term of the stress equation as Bradshaw, Ferriss & Atwell 
(1967) have done for the energy equation, but rather to model the overall be- 
haviour of the terms taken together. The model is relatively simple, and can 
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handle in a natural way flow situations involving stresses of opposite sign. 
It involves only two coefficients, one of which is related to the relaxation charac- 
teristics of the flow and the other to equilibrium properties. As the scaling laws 
for these parameters can be easily obtained, suitable non-dimensional numbers 
nvolving them can (in the simplest version of the model) be taken as constants. 

When preliminary work showed that this model provided an excellent descrip- 
tion of wake development in a nearly impulsive pressure gradient, further experi- 
ments were undertaken with a view to providing more severe test cases for the 
model. For convenience, these are reported briefly in $ 2 before the model adopted 
is studied. Other experiments which turn out to be relevant to a consideration 
of non-equilibrium effects are those on strained and distorted wakes studied by 
Reynolds (1962) and Keffer (1965, 1967). Although these studies were seeking 
self-preserving solutions the experiments (especially those of Keffer) often 
revealed no trend towards equilibrium, and therefore fall within the scope of the 
analysis to be described below. 

I n  $3  we briefly describe the basis for the model adopted, its consistency with 
the observations in I, and the implications for equilibrium flows. A method of 
solving the equations is described in $4. We then undertake (in $5) a detailed 
comparison of the flow development predicted by the model with all the available 
experimental data. A concluding discussion is presented in $6.  

2. The experiments 
A total of six different series of experiments, each with a different pressure 

gradient, were conducted. Some relevant details regarding each series are sum- 
marized in table 1. When naming the experiments, we use the letters F, M and A 
to denote favourable, mixed and adverse pressure gradients respectively. Flows 
F 1 and F 2 have already been reported in I but are included in table 1 for com- 
pleteness. The instrumentation used for the measurements was the same as in I. 

2.1. The wind tunnels 
Two different tunnels were used in the course of this work; the configurations are 
shown in figure 1. The ‘one-foot ’ tunnel has a test section which is I x 1 x 14ft.; 
the unusual length (found necessary for attainment of the final equilibrium state 
in F 2) meant that strictly two-dimensional flow was not possible far downstream 
along the test section, and we have been forced to apply certain convergence cor- 
rections, described in the appendix. The maximum speed possible in the tunnel is 
120 ft/s. All experiments involving short favourable pressure gradients were 
conducted in this tunnel. 

For obtaining short adverse pressure gradients, the 4 x 9 in. tunnel shown in 
figure I (b )  was used. Separation of the tunnel wall boundary layer due to the 
adverse gradient was avoided by boundary-layer control using blowing. The 
suppression of separation was confirmed by tuft surveys and by measurements of 
the pressure distribution. 

Figure 1 (c )  shows the twin-plate wake generator used in most of the experi- 
ments. 
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Liners for different 
pressure gradients 
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FIGURE 1. (a) The 'one-foot ' tunnel. Two typical liners (each used in a different experiment) 
are also shown. ( b )  The 4 x 9 in. tunnel, used for obtaining impulsive adverse pressure 
gradients with the help of boundary-layer control by blowing on the side walls. The wind 
velocity in either tunnel can be varied by the operation of flaps in the speed control section. 
( c )  The twin-plate wake generator used in most of the experiments reported here. 

2.2. The pressure gradients 
The free-stream velocity distributions U ( x )  in the different experiments listed in 
table 1 are all shown in figure 2. Of these, the distributions F 1, F 2 ,  F 3  and A 1  
were designed to approximate step-function changes in U (corresponding to 
near delta functions in the pressure gradient) without, however, violating the 
boundary-layer approximation (see discussion in I). The pressure gradients for 
all the experiments conducted in the one-foot tunnel were obtained by placing 
suitable liners on the side walls, as indicated for two typical cases in figure 1 (a ) ,  
In  the experiments F 1, F 2 and P 3 the liners produced a contraction in the 
tunnel cross-sectional area over a distance of about 6 in., after which the liner 
thickness remained constant until the end of the test section. A divergence on 
the other two tunnel walls corrected for the effect of boundary-layer growth. 

The adverse pressure gradient A 1  was created by an expansion of the test 
section of the 9 x 4in. tunnel to 17 x 4in. over a distance of 6in. 

The results of the experiments are shown together with those of the theory we 
shall describe below in figures 4-10. 

3. Model for stress transport 
3.1. The equation 

The basis of the model we shall adopt here (Narasimha 1969) is briefly the assump- 
tion that each of the terms in the exact but insoluble stress transport equation 
(for dr ld t )  may always be considered as the sum of its value a t  a suitably defined 
local equilibrium state (to be discussed in $3.3) and a non-equilibrium perturba- 
tion. The latter can, in view of the exponential approach to equilibrium noted in 
I, be taken as proportional to the deviation of the stress from the local equilibrium 
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FIGURE 2. Free-stream velocity distributions in the present experiments. 

value 7, at least in a first approximation for small departures. The net non- 
equilibrium contribution to stress transport is therefore of the form A(?- 7). 

The equilibrium transport terms, characterizing an effectively memory-less 
and parabolic flow, are modelled as being collectively equivalent to gradient dif- 
fusion in the stress. This is certainly consistent with observed stress distributions 
in many equilibrium flows, including the wake, where the well-known dipole 
solution of the diffusion equation applies (see Narasimha 1969). The model equa- 
tion for stress transport is 

where v7 is the stress 'diffusivity. It is worth] emphasizing that the concept of 
collective modelling implies that the terms in (3.1) should not individually be 
identified with those of the exact transport equation. For example, the term AT 
in (3.1) does not represent stress production but contains a part of it, as do the 
rest of the terms. 
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Further extensions to the model are suggested by refinements of the argument 
we have sketched here (and will be considered in a future paper by Narasimha) 
but we shall find below that, for such purposes as describing the mean flow 
development in wakes, it is not even necessary to consider the (expected) de- 
pendence of A and v7 on the stress, velocity and position. Instead, the simplest 
assumption of taking suitable non-dimensional forms of A and v, to be constant 
turns out to be more than adequate for all flows considered here. Indeed, from 
the results of I, the relaxation time must be proportional to the relaxation length 
and hence to the momentum thickness 19, so A must scale like U/B; the diffusivity 
must similarly (cf. the usual scale for the eddy viscosity) scale with UB or uio 6. 
We therefore put 

where the non-dimensional quantities a and k would, in the simplest version of the 
model, be taken as universal constants. The number a is simply the ratio of a 
typical flow time to the characteristic relaxation time of the turbu1ence.t 

It might appearthat, in fact, (3.1) and (3.2) virtually decouple the stress equa- 
tion from the velocity field. However this is not true for (as we shall see in $3.2) 
it is possible to choose the stress diffusivity so that, under certain conditions, 
the stress can be obtained through an eddy viscosity- surely a desirable property 
of the model, as a weakly sheared quasi-homogeneous flow ought to be describable 
in terms of an eddy viscosity on general statistical-mechanical considerations 
(see e.g. Kubo 1966). 

A = uU/B, V, = w06k(~), ( 3 4  

3.2. Equilibrium solutions of the model equation 
It is obviously important to examine these solutions before a consistent definition 
of the local equilibrium stress 7 is achieved. For a shallow equilibrium wake, the 
momentum equation is, from (2.4) in I, 

where the stress 7 in equilibrium is governed by the appropriately linearized ver- 
sionof (3.1): 

(3.4) 

By comparing with (3.3), it is easily shown that the stress given by (3.4) is equiva- 
lent t o  that given by an eddy viscosity vT = v, if (i) each can be considered a con- 
stant, (ii) the pressure gradient is vanishingly small ( A  + 0) and (iii) the inertia 
terms in the momentum equation can be linearized. 

The equilibrium solutions can now be obtained by the same self-preservation 
type of analysis as in I, so details (available in Narasimha & Prabhu 1971) will 
be omitted. The equation governing the stress function g(7)  = r/wt is 

(kg' ) '+K,yg-2K3g = 0, 

where 
i d  m a w o  M aw, K - -- (uq, K ,  = 2- = -- 

- wodx wo ax uwg ax 
i It is possible to consider A and V, as being related to each other, but experiments (0 5 )  

indicate a possible departure of a from its standard constant value when the local pressure 
gradient is very large. 
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must be constant. The additional condition imposed by the present stress model 
through K,  implies that equilibrium cannot in general be expected for all U(x) .  
If we take k(7) to be a constant, k, say, (3.5) reduces to an equation encountered 
earlier by Mellor (1962) and Vasantha & Prabhu (1968). It can be shown that 
antisymmetric exponentially decaying solutions of this equation exist only 
when n = (K3+ k,) /k ,  is an odd integer; the wake development is then given by 

2(n+ ' O M S  u a x +  constant. 
U2 

(U6)2 = M2 ( Uw,)-2 = (3.7) 

This must, however, be consistent with the solution of the momentum equation 
(see equation (2.11) of I) 

if U N xm this implies that m = (n- l)/(n+3), i.e. m = (3, +, Q, etc.; 0 6 m < 1. 
It is easily verified that with the scaling of A given by (3.2) the relaxation term in 
(3.1) always remains small, so that the solutions do not violate the assumption of 
equilibrium made in writing (3.3). 

3.3. Proposal for equilibrium stress 
The significance of equilibrium solutions obtained only for the isolated values of 
m derived above must be seriously doubted, especially in view of the assumption 
that k(7)  must be a constant. Keeping in mind the experimental evidence 
discussed in I, we must conclude that the only possible equilibrium flow for a 
plane turbulent wake is the one that is known to exist, by experiment, a t  con- 
stant pressure (or more precisely for h + 0). The logical choice for 7 is therefore 

= w;g(r), (3.9); 

where S is the equilibrium stress distribution in a constant-pressure wake, for 
this has the automatic effect of restricting the equilibrium solutions (3.7) of 
the model to the case m = 0. 

One can in fact use values of g measured experimentally ; this is possible because 
the function k(7)  of (3.2) can be chosen to yield the measured stress distribution ij 
by integrating (3.5): 

k(7) = -=2 "18(4)-/; ~ ( r ) d r ]  7 (3.10) 

where k ,  is a constant determined from experiment. (To find k in terms of the 
equilibrium velocity distribution f, one has only to replace g by rf in (3.10).) 
Values of this function, and also of a standardf(7) inferred from measurements, 
are given by Narasimha & Prabhu (1971). 

If, therefore, 7 and k(7) in the model (3.1) are assigned values given by (3.9)' 
and (3.10)) we shall have a consistent stress equation which restricts the equili- 
brium solution to the wake at zero (or small) pressure gradient. 

Equation (3.9) defines what may be called the local equilibrium stress, in terms. 

d ( r )  
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of the true (and a priori unknown) defect velocity w,. An alternative definition 
for ?, which may be called the stress with strict equilibrium, would be obtained 
by putting it equal to Gijtg, where Go is the self-preserving solution (3.8) for w,. 
This was considered but abandoned as not being very satisfactory logically, 
because 5, introduces an explicit dependence on x (from the constant-pressure 
solution) whose significance is doubtful. 

We make a h a 1  remark here about the stringency of the conditions for the 
existence of equilibrium. Equilibrium is possible only if the relaxation time A-l 
is sufficiently small compared with the relevant flow time scales. If there is a 
pressure gradient, we require A B U'. The experiments discussed in I suggest 
that A = O( 10-8 x U/O); therefore we must have 

A < 10-3 x uqw,e - 10-3 x (uIW,)~. 

For ( U/W, )~  - 103 this requires h -g 1 for equilibrium, as experiments suggest. 
We may conclude, therefore, that the model (3.1) is generally consistent with 

the known qualitative features of both relaxing and equilibrium wakes. It remains 
to consider how satisfactory it is for quantitative predictions of wake develop- 
ment. 

4. Solution of the equations 
The basic equations to  be solved in the present scheme are the momentum 

equation (3.4) and the stress equation (3.3). I n  comparing the predictions with 
the experimental data we need, however, to take account of the observed con- 
vergence in the flow, so the equations actually solved incorporate the required 
modifications described in the appendix. 

4.1. The momentum equation 

As noted in I, the defect velocity profiles and the stress distributions exhibit an 
internal similarity even in non-equilibrium flow; furthermore, although the 
velocity and stress scales are in general not identical, the length scales for both 
distributions appear to be practically the same. These facts enable us to obtain 
a simple and accurate solution of the momentum equation in terms of the (as 
yet undetermined) stress scale 7,; the solution, allowing for flow convergence (see 
appendix), is 

At Uw, = ~6 = constant x exp 

where the constant can be determined from initial conditions. As 7, (to be found 
using the stress equation) involves w, and 6, an iteration procedure is necessary 
for completing the solution (4.1). The stress equation may also be solved satis- 
factorily using an integral approach (Prabhu 1971), but as the equation in 
question is essentially new it was thought desirable to obtain accurate solutions 
numerically. Before describing the computational procedure adopted it is con- 
venient to specify the stress equation more closely. 
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4.2, Parameters in the stress equation 
In  the solutions to be presented below we have taken both a and k(7) in (3.2) to 
be constant, chiefly so as to work with the simplest possible model. This implies, 
in particular, that we are willing to tolerate the observed differences between the 
measured velocity distribution and the Gaussian. It is not difficult to correct this, 
using either the function k(7)  suggested in § 3.3, or a factor taking account of the 
intermittency of the wake near its edge, as Townsend (1956, p. 161) has done. 
However, such refinement is unnecessary if we are mainly interested only in 
predictions of mean flow parameters like w, and 6. 

As a consequence, the stress T has been taken as 

7 = wg$(r) = (21n2)k0wt7exp( -r21n2), (4.2) 

corresponding to the Gaussian velocity distribution. Except in a few calculations 
made specifically to assess the differences, we have taken ?: to be given by the 
local equilibrium value (4.2) rather than by the strict equilibrium value. The 
constants a and k, were chosen to agree with the measurements, as listed in 
the appendix to I, again with the exception of a few calculations made to test 
the sensitivity of the results to the choice of parameters. 

4.3. The computational scheme 
After incorporating the convergence terms as described in the appendix, the 
stress equation (3.3) can be written as the parabolic equation 

a7 a27 a7 - = a  -+a -+aa,7+a,, ax l a Y 2  2ay 

where the ai (i = 1,2,3,4) are given by (see appendix) 

(4.3) 

(4.4) 
a3 = A / U ,  a4 = -AT/U,  1 

and in general depend on w, and 6. 
Equation (4.3) has been solved using the Crank-Nicolson finite-difference 

scheme with suitable difference corrections; the advantages of this procedure are 
well known (see e.g. Modern Computing Methods, National Physical Laboratory, 
H.M.S.O. 1961). 

Figure 3 gives a flow chart for the computational scheme employed. At the 
beginning of the calculation the stress profile was assumed known at some initial 
station x,; because of the observed internal similarity it was usually taken as 

where 7, is the stress scale mentioned earlier and q is a number which allows for 
the possibility of non-equilibrium flow, being zero if the flow was known to be in 
equilibrium a t  x . As the finite-difference scheme also requires a knowledge of the 
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Read data Q 

I 

I Compute ni, difference corrections I 
N 

ITRN=O 

Set new T( y) 

PRINT 
Y- 

FIGURE 3. Flow chart of computational scheme. M is an index which is zero at  the 
initial station xL and is unity at all stations downstream. Y = yes, N = no. 

ai at the next step x + Ax, it is necessary to start with a zeroth iterate for wo and 
6 at z + Ax. For the first three steps from xl, this was obtained from the strict 
equilibrium solution (3.8) for Go and 8. For x > xl+ SAX an extrapolation was 
made using a four-point Lagrangian formula fitting the calculated solution at the 
last, four points. By using these values to provide a first guess, r was calculated 
at the next step from the Crank-Nicolson scheme. This gave 

TO(%) = T O ( X J  Tmax(%)/Tmax(XJ, 

and hence, from (4.1), new estimates for wo, 6 and ui. These were used for the next 
iterate and the procedure was repeated until the results from successive iterations 
agreed sufficiently closely. 
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I I 

0 50 100 150 

x (in.) 

FIGURE 4. Wake development in flow F 2 ( b ) .  Points are experimental measurements; curves 
in the upper part of the digram show the results of calculations. - , calculation using 
local equilibrium values for 5 with convergence correction; --- , calculation using local 
equilibrium values for 7 without convergence correction; ---- , calculation using strict 
equilibrium values for 7 with convergence correction. 

After a few trials, it  was found that step sizes of 0.16, in y and 26, in x were 
entirely adequate : for the equilibrium wake this predicted shear stress profiles 
with an error of less than one in lo6. With these step sizes, one iteration was 
usually enough to provide wo and 6 to within one in lo4. The complete calculation 
of a flow like any of those listed in table 1, involving say about 50 y steps and 250 
x steps, was found to take about 1Q min on a CDC-3600 computer. 

More details about the numerical scheme, and a program listing, are available 
in Prabhu (1971). 

5. Results 
A11 the flows listed in table 1 have been calculated using the method described 

above. The two empirical constants needed in these calculations, namely k, 
and a, have both been determined essentially from the single experiment F2; 
k,, from data on wake growth in the equilibrium flow upstream of the (impulsive) 
pressure gradient and a from the relaxing flow far downstream. The results of the 
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I 0 

0.2 - 
1 I 

0 50 100 

x (in.) 

0 

FIGURE 5. Measurements (points) of maximum stress in flow F2(b)  compared with the 
calculations (solid line) based on the stress equation (3.1). The bar shows the change in pre- 
diction if a is changed from 6 x 10-4 to 10 x 10-4 (lower a gives higher stress) around the 
standard value we have adopted: a = 8.2 x 

0 50 100 I50 

X (in.) 
FIGURE 6. Comparison of measured and computed values of r,,, 

for flow F 2 ( b ) .  -, model solution, a = 8.2 x lo-'. 

calculation are compared with measurements in a series of diagrams which also 
show the variations of h and M in each flow. 

No results are shown for the flow F 1 because it hardly departs from equilibrium. 
Figure 4 shows the predictions from the model with the measurements in the flow 
F 2 (b) .  Also shown are the results of calculations made both without convergence 
corrections, using the local equilibrium stress, and with convergence corrections, 
using either the local or strict equilibrium values for T.  It is Seen that these different 
choices hardly affect wo but 6 is more sensitive ; the local equilibrium stress with 
corrections for convergence shows excellent agreement with experiment. 

Figures 5 and 6 show a comparison of the measured maximum stress in the 
same flow with calculated values. The agreement here is not as good as that for 
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0 5 10 

104 

FIGURE 7. Sensitivity of predicted stress, wake defect and thickness t o  values of the two 
Parameters in the model stress equation. Stress values evaluated at z = 44in., wo and S at 
z = 132in. On the curves k, = 0.065. Bars show changes in prediction for change in k ,  from 
0.06 t o  0.07 (6 increases and wo decreases as k, increases). 

mean flow parameters. There are, however, several plausible reasons for this. 
The calculations have been based on the assumption (4.2), which cannot be 
strictly true and is likely to affect the stress distribution near and beyond 7 2 1.0, 
and in particular the value of T,,,. In  this region, however, the stress gradient 
&/ay is small; as it is only the gradient which appears in the momentum equation, 
mean flow parameters like wg and S can still be predicted satisfactorily. It is also 
possible that some of the discrepancy may be due to the neglected normal stress 
terms in the momentum equation. Nevertheless, the ‘freezing ’ of the stress while 
the wake is being subjected to pressure gradient, pointed out in I ,  suggests that 
u might depend on the strain ratio, decreasing rapidly to zero as (say) h increases. 
Note that the ordinate variable in figure 5 is proportional to vT/wo 6, and shows 
stronger variations than the stress itself; the eddy viscosity is therefore harder to 
model faithfully. 

Figure 7 shows that the results of the calculations are not very sensitive to 
slight changes in a or k,. Figure 8 shows results for the flow F 3. Also shown here, 
for comparison, are the predictions of classical self-preserving theory, with and 
without convergence corrections. Figure 9 shows results of an early experiment 
on the wake behind a circular cylinder. In  this case, the wake was almost certainly 
not in equilibrium at the initial station (50 diameters downstream of cylinder) 
and so calculations were made for several different values of q. It is seen that with 
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I h 

-0.2 I I I I - 
0 20 40 60 80 

x (in.) 

FIGURE 8. Comparison between measured and calculated wake development in flow F3. 
, equilibrium solution; - -, equilibrium solution for S corrected for convergence from 

(A3); __ , calculation using local equilibrium stress with convergence correction. 

q = 0.2 agreement between theory and experiment is very good; changes in q 
again affect 6 more than wo. 

Figures 10 (a )  and (b )  show the results for flows with adverse and mixed pres- 
sure gradients. Unfortunately it was found to be difficult to reduce the momen- 
tum imbalance much below 30% at the last station in the adverse pressure 
gradient experiment A 1 ; it may be recalled that this experiment was conducted 
in a small tunnel. The flow M 1, in which a sharp fall in pressure is followed by a 
slightly more gradual rise, is perhaps the most severe test of the model; it is seen 
that the predictions from the model faithfully reproduce the measured kinky 
distributions? of wo and 6. 

Finally we present an analysis of flows studied by Keffer (1965, 1967). Here 
the wake behind a circular cylinder was subjected to disortion in a duct of constant 
cross-sectional area (so that there was no pressure gradient). Keffer was seeking 
possible equilibrium flows; but, by using Keffer’s data to find M = M ( x )  and 

t If AW:/T~ is large (this needs only moderate h as w ~ T , ,  is of order 10) the stress term in 
(3.3) can be ignored, and both U6 and Uw, are then constant, by (4.1). Although this ‘ idcal- 
fluid ’ approximation is not quantitatively satisfactory in the present experiments, it indi- 
cates the physical mechanism responsible for the observed thinning of the wake during 
accoleration in the flows F 3 and M 1. 
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I I I 
0 20 40 60 

x (in.) 

FIGURE 9. Comparison between measured and calculated wake development, flow F 4. On 
the curves (from the theory) the initial value of q is taken as 0.2. Bars show change in pre- 
diction as q increases from 0.1 to 0.3 (&  increases, wo decreases). 

hence the local convergence, the flow can be analysed along the same lines as the 
other flows we have been discussing. The results shown in figure 11 correspond to 
the case (Keffer 1965) when the distortion compresses the wake in the normal 
direction. Computations were made using the methods indicated in $4.3. They 
agree quite well with the measurements except over the last loin. or so; the 
disagreement here could well be due to the existence of a pressure gradient, noted 
by Keffer, in the neighbourhood of the transition from the distorting duct to a 
uniform channel in his experimental set-up. 

Figure 12 compares the results of similar calculations with the later experi- 
ments of Keffer (1967) where the distortion stretches the wake in the normal 
direction. The agreement with the experiments is again quite good. It would 
appear, therefore, that the effect of distortion on the turbulent wake in these 
experiments might merely be to produce departures from plane flow; it is not 
necessary to postulate changes in the turbulent structure (cf. Bradshaw 1971) 
with either kind of distortion to explain the observed flow development. 

3 F L M  54 
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FIGURE 10. Comparisons between measured and calculated wake development. Points 
represent measurements; solid lines in the upper parts of the diagrams are from calculation. 
(a)FlowAl. (b)FlowMl. 
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FIGURE 11. Comparison between measured and calculated wake development in $he dis- 
torted wake studied by Keffer (1965). Diameter of the cylinder d = &in.; distance of the 
beginning of distortion from the cylinder = loin. - , calculations using k, = 0.065, 
q = 0. 

10 

5 -  

.. 
0 ” ” - 0 

0 10 20 30 40 

%-So (in.) 

FIGURE 12. Comparison between measured and calculated flow development in the dis- 
torted wake studied by Keffer (1967). Diameter of the cylinder d = tin.; distance of the 
beginning of distortion from the cylinder = 20in. - , cahdations using k, = 0.065, 
q = 0. 

6.  Conclusions 
It has been shown that the development of wakes subjected to arbitrary pres- 

sure gradients, and even to (relatively mild) distortion, can be described in terms 
of the concepts of equilibrium and relaxation, both being capable of quite precise 
definition. There is some evidence that when pressure gradients are extremely 
large the stress ‘freezes ’, but this phenomenon, presumably characterizing 
‘rapid distortion ’, needs further investigation. A more fundamental under- 
standing of all these processes can only be provided by detailed studies of energy 

3-2 
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and stress balance, but it is useful t o  be able to classify flow behaviour into a 
few recognizable (even if gross) phenomena. 

The wake, which is the only flow studied here, has a turbulent energy balance 
dominated by advection and so may be expected to have a longer memory than 
a production-dominated flow. However there is a well-known resemblance 
between the outer part of a turbulent boundary layer and a wake (Townsend 
1956; Coles 1956), and some of our general conclusions ought to be valid for a wider 
class of flows, with suitable modifications to allow for the coupling that is known to 
exist between the inner and outer flows in the boundary layer. Thus, it may be 
expected that self-preserving solutions of the mass and momentum equations 
can in general be observed only if the relaxation time for the turbulent flow is 
small compared with an appropriate flow time, or if the pressure gradient is 
sufficiently small. 

We finally note that the numerical approach adopted in the present work to 
solve the equations should not always be necessary; work now in progress has 
shown that approximate solutions can be obtained by simpler methods. Indeed 
one of the advantages of the model used here is that it is simple enough t o  be 
tractable, at  least in some special cases, without resort to heavy computation. 

Appendix. Convergence corrections 
When measurements in any of the experiments reported here showed that the 

two-dimensional momentum integral equation was not strictly obeyed we 
applied ‘convergence corrections ’ (to either measured or calculated values) along 
the lines proposed by Bradshaw & Ferriss (1965) for turbulent boundary-layer 
flows. The correction attributes the apparent momentum imbalance to a slow 
convergence of streamlines in the transverse (i.e. x, x )  plane towards the axis of 
the flow. To a first approximation such convergence may be considered to have a 
centre at  some (large) distance x, downstream. The resulting influx of fluid into 
the plane of symmetry (x,y), of amount u/(x,-x) per unit volume, alters the 
momentum equation (3.4) to 

for a small defect wake. The corresponding momentum integral equation is now 

do U‘ I3 
-+-((H+2)8 = -. 
dx u x,-x 

Integrating for a small defect wake (with H E 1 and 0 proportional to woS/U 
for similar defect velocity distributions) finally gives 

M = U2w,,S = constant/(x,-x), or zc-x = M/IM’, 

where M‘ = dM/dx. Putting this in (A 1) yields the corrected momentum equation 



Turbulent non-equilibrium wakes 37 

We may now find the self-preserving solutions of (A2), using the same method 
of analysis as in I. Again it is easily shown that such solutions exist for arbitrary 
U(x) ,  but the wake development is now given by a slightly modified version of 
(3.8): 

The corrected equilibrium solution shown in figure 7 was obtained from (A3). 

of yU’ by yM(U/M)’ gives the corrected stress equation as 
If we follow the same procedure as for the momentum equation, replacement 

For given M ( x ) ,  (A2) and (A4) govern the wake development. 
A fairly simple correction, and incidentally a useful integration of the 

momentum equation, can be obtained if we are willing to assume that the flow, 
even when not in equilibrium, possesses the internal similarity mentioned in 
I. Thus, if weput 

where T~ is a stress scale, it can be shown, using the same kind of analysis as in I, 
that the solution of (A2) can be reduced t o  a quadrature in terms Of 70: 

wlwo = f(sL ./To = ds), (A 5) 

M 
O -  u6- Uw - - - constant x exp 

This ‘solution’ is in fact found to be quite accurate, which is not surprising as 
experiment shows that the assumptions (A5) are very good. Of course T~ itself 
depends on wo and 6, through the stress model, so that (A6) is still an integral 
equation rather than a closed solution. 

Now in the present experiments, the departure of M ( z )  from an initial (nearly 
constant) value M ,  is quite small, and furthermore occurs relatively far down- 
stream (see figures 4-10). The change in the value of the integral in (A6) or (A3) 
due to the departure of M from M ,  is therefore particularly small, being of the 
order of only a few per cent even at  the last measuring station in the present 
experiments. We may conclude immediately that the three-dimensionality 
hardly affects the prediction of wo, and alters the prediction of 6in proportion to 
the local value of M(x) .  

This is a fairly general conclusion, for which the basic reason is that the 
equation of motion along the axis of the flow, and hence wo, is unaffected by the 
convergence. As the first equation in (A3) is always valid because of the universal 
similarity of wake defect profiles, it follows that in general 6 may be expected to  
vary directly like M .  Experimental data on wake development may therefore be 
corrected for convergence, in a relatively simple way, by merely multiplying 
the measured 6 by the factor M J M .  
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